Chekanov-Eliashberg dg-algebras for singular Legendrians
Johan Asplund
Abstract: The Chekanov-Eliashberg dg-algebra is a holomorphic curve invariant associated to a Legendrian submanifold of a contact manifold. In this talk we explain how to extend the definition to singular Legendrian submanifolds admitting a Weinstein neighborhood. Via the Bourgeois-Ekholm-Eliashberg surgery formula, the new definition gives direct geometric proof of the pushout diagrams and stop removal formulas in partially wrapped Floer cohomology of Ganatra-Pardon-Shende. It furthermore leads to a proof of the conjectured surgery formula relating partially wrapped Floer cohomology to Chekanov--Eliashberg dg-algebras with coefficients in chains on the based loop space. This talk is based on joint work with Tobias Ekholm.
algebraic geometrydifferential geometrygeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.
The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.
| Organizers: | Jonny Evans*, Ailsa Keating, Yanki Lekili* |
| *contact for this listing |
